References

Albersheim, P., Darvill, A., Roberts, K., Staehelin, L. A., and Varner, J. E. (1997). Do the structures of cell wall polysaccharides define their mode of synthesis? Plant Physiol. 113, 1–3.

Amor, Y., Haigler, C. H., Johnson, S., Wainscott, M., and Delmer, D. P. (1995). A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92, 9353–9357.

Anterola, A. M., and Lewis, N. G. (2002). Trends in lignin modification: A comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61, 221–294.

Appenzeller, L., Doblin, M., Barreiro, R., Wang, H., Niu, X., Kollipara, K., Carrigan, L., Tomes, D., Chapman, M., and Dhugga, K. S. (2004). Cellulose synthesis in maize: Isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11, 287–299.

Arioli, T., Peng, L., Betzner, A. S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Hö fte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., et al. (1998). Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279, 717–720.

Attala, R. H., and Vanderhart, D. L. (1984). Native cellulose: A composite of two distinct crystalline forms. Science 223, 283–285.

Barber, G. A., Elbein, A. D., and Hassid, W. Z. (1964). The synthesis of cellulose by enzyme systems from higher plants. J. Biol. Chem. 239, 4056–4061.

Beeckman, T., Przemeck, G. K. H., Stamatiou, G., Lau, R., Teryn, N., De Rycke, R., Inze, D., and Berleth, T. (2002). Genetic complexity of cellulose synthase A gene function in Arabidopsis embryogenesis. Plant Physiol. 130, 1883–1893.

Boisson, M., Gomord, V., Audran, C., Berger, N., Dubreucq, B., Granier, F., Lerouge, P., Faye, L., Caboche, M., and Lepiniec, L. (2001). Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. EMBO J. 20, 1010–1019.

Brown, R. M., Jr. (1996). The biosynthesis of cellulose. J. Macromol. Sci. Pure Appl. Chem. A33, 1345–1373.

Bureau, T. E., and Brown, R. M., Jr. (1987). in vitro synthesis of cellulose II from a cytoplasmic membrane fraction of Acetobacter xylinum. Proc. Natl. Acad. Sci. USA 84, 6985–6989.

Burn, J. E., Hocart, C. H., Birch, R. J., Cork, A., and Williamson, R. E. (2002a). Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol. 129, 797–807.

Burn, J. E., Hurley, U. A., Birch, R. J., Arioli, T., Cork, A., and Williamson, R. E. (2002b). The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II, an enzyme processing N-glycans during ER quality control. Plant J. 32, 949–960.

Burton, R. A., Gibeaut, D. M., Bacic, A., Findlay, K., Roberts, K., Hamilton, A., Baulcombe, D. C., and Fincher, G. B. (2000). Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12, 691–706.

Burton, R. A., Shirley, N. J., King, B. J., Harvey, A. J., and Fincher, G. B. (2004). The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol. 134, 224–236.

Cano-Delgado, A., Penfield, S., Smith, C., Catley, M., and Bevan, M. (2003). Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 34, 351–362.

Carpita, N. C., and Delmer, D. P. (1981). Concentration and metabolic turnover of UDP-glucose in developing cotton fibers. J. Biol. Chem. 256, 308–315.

Chambers, J., and Elbein, A. D. (1970). Biosynthesis of glucans in mung bean seedlings. Formation of β-(1!4)-glucans from GDP-glucose and β-(1 ! 3)-glucans from UDP-glucose. Arch. Biochem. Biophys. 138, 620–631.

Charnock, S. J., and Davies, G. J. (1999). Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38, 6380–6385.

Charnock, S. J., Henrissat, B., and Davies, G. J. (2001). Three-dimensional structures of UDP-sugar glycosyltransferases illuminate the biosynthesis of plant polysaccharides. Plant Physiol. 125, 527–531.

Clouse, S. D. (2002). Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell 14, 1995–2000.

Colombani, A., Djerbi, S., Bessuelle, L., Blomqvist, K., Ohlsson, A., Berglund, T., Teeri, T. T., and Bulone, V. (2004). in vitro synthesis of (1!3)-β-D-glucan (callose) and cellulose by detergent extracts of membranes from cell suspension cultures of hybrid aspen. Cellulose 11, 313–327.

Coutinho, P. M., Stam, M., Blanc, E., and Henrissat, B. (2003). Why are there so many carbohydrateactive enzyme-related genes in plants? Trends Plant Sci. 8, 563–565.

Cui, X., Shin, H., Song, C., Laosinchai, W., Amano, Y., and Brown, R. M., Jr. (2001). A putative plant homolog of the yeast β-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers. Planta 213, 223–230.

Cutler, S., and Somerville, C. (1997). Cloning in silico. Curr. Biol. 7, R108–R111.

D’Argenio, D. A., and Miller, S. I. (2004). Cyclic di-GMP as a bacterial second messenger. Microbiology 150, 2497–2502.

Delmer, D. P. (1983). Biosynthesis of cellulose. Adv. Carbohydr. Chem. Biochem. 41, 105–153.

Delmer, D. P. (1999). Cellulose biosynthesis: Exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 245–276.

Desnos, T., Orbovic, V., Bellini, C., Kronenberger, J., Caboche, M., Traas, J., and Hö fte, H. (1996). Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark- and light-grown Arabidopsis seedlings. Development 122, 683–693.

Desprez, T., Vernhettes, S., Fagard, M., Refrégier, G., Desnos, T., Aletti, E., Py, N., Pelletier, S., and Hö fte, H. (2002). Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CesA6. Plant Physiol. 128, 482–490.

Doblin, M. S., De Melis, L., Newbigin, E., Bacic, A., and Read, S. M. (2001). Pollen tubes of Nicotiana alata express two genes from different β-glucan synthase families. Plant Physiol. 125, 2040–2052.

Dhugga, K. S., and Ray, P. M. (1994). Purification of 1,3-β-D-glucan synthase activity from pea tissue. Two polypeptides of 55 kDa and 70 kDa copurify with enzyme activity. Eur. J. Biochem. 220, 943–953.

Djerbi, S., Aspeborg, H., Nilsson, P., Sundberg, B., Mellerowicz, E., Blomqvist, K., and Teeri, T. T. (2004). Identification and expression analysis of genes encoding putative cellulose synthases (CesA) in the hybrid aspen, Populus tremula (L.) x P. tremuloides (Michx.). Cellulose 11, 301–312.

Ellis, C., and Turner, J. G. (2001). The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13, 1025–1033.

Ellis, C., Karafyllidis, I., Wasternack, C., and Turner, J. G. (2002). The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14, 1557–1566.

Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refregier, G., Mouille, G., Mccann, M., Rayon, C., Vernhettes, S., and Hö fte, H. (2000). PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12, 2409–2423.

Feingold, D. S., Neufeld, E. F., and Hassid, W. Z. (1958). Synthesis of a β-1,3-linked glucan by extracts of Phaseolus aureus seedlings. J. Biol. Chem. 233, 783–788.

French, A. D. (2000). Structure and biosynthesis of cellulose. Part I. Structure. In ‘‘Discoveries in Plant Biology’’ (S. D. Kung and S. F. Yang, eds.), Vol. III, pp. 163–197. World Scientific, Hong Kong.

Gillmor, C. S., Poindexter, P., Lorieau, J., Palcic, M. M., and Somerville, C. (2002). a-glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis. J. Cell Biol. 156, 1003–1013.

Glaser, L. (1958). The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. J. Biol. Chem. 232, 627–636.

Holland, N., Holland, D., Helentjaris, T., Dhugga, K. S., Xoconostle-Cazares, B., and Delmer, D. P. (2000). A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol. 123, 1313–1323.

Hong, Z., Delauney, A. J., and Verma, D. P. S. (2001). A cell plate-specific callose synthase and its interaction with phragmoplastin. Plant Cell 13, 755–768.

Hu, W. J., Harding, S. A., Lung, J., Popko, J. L., Ralph, J., Stokke, D. D., Tsai, C. J., and Chiang, V. L. (1999). Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol. 17, 808–812.

Kadam, K. L., and Mcmillan, J. D. (2003). Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour. Technol. 88, 17–25.

Kawagoe, Y., and Delmer, D. P. (1997). Pathways and genes involved in cellulose biosynthesis. In ‘‘Genetic Engineering’’ (J. K. Setlow, ed.), pp. 63–87. Plenum Press, New York.

Klemm, D., Heublein, B., Fink, H.-P., and Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 2–37.

Kokubo, A., Kuraishi, S., and Sakurai, N. (1989). Culm strength of barley: Correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physiol. 91, 876–882.

Kokubo, A., Sakurai, N., Kuraishi, S., and Takeda, K. (1991). Culm brittleness of barley (Hordeum vulgare L.) mutants is caused by small number of cellulose molecules in cell wall. Plant Physiol. 97, 509–514.

Kondo, T., Togawa, E., and Brown, R. M., Jr. (2001). Nematic ordered cellulose: A concept of glucan chain association. Biomacromolecules 2, 1324–1330.

Kondo, T., Kasai, W., and Brown, R. M., Jr. (2004). Formation of nematic ordered cellulose and chitin. Cellulose 11, 463–474.

Koyama, M., Helbert, W., Imai, T., Sugiyama, J., and Henrissat, B. (1997). Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc. Natl. Acad. Sci. USA 94, 9091–9095.

Kudlicka, K., and Brown, R. M., Jr. (1997). Cellulose and callose biosynthesis in higher plants. I. Solubilization and separation of (1 ! 3)- and (1 ! 4)-β-glucan synthase activities from mung bean. Plant Physiol. 115, 643–656.

Kudlicka, K., Brown, R. M., Jr., Li, L., Lee, J. H., Shin, H., and Kuga, S. (1995). β-glucan synthesis in the cotton fiber. IV. in vitro assembly of the cellulose I allomorph. Plant Physiol. 107, 111–123.

Kudlicka, K., Lee, J. H., and Brown, R. M., Jr. (1996). A comparative analysis of in vitro cellulose synthesis from cell-free extracts of mung bean (Vigna radiata, Fabaceae) and cotton (Gossypium hirsutum, Malvaceae). Am. J. Bot. 83, 274–284.

Kurek, I., Kawagoe, Y., Jacoβ-Wilk, D., Doblin, M., and Delmer, D. (2002). Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc. Natl. Acad. Sci. USA 99, 11109–11114.

Lai-Kee-Him, J., Pelosi, L., Chanzy, H., Putaux, J. L., and Bulone, V. (2001). Biosynthesis of (1!3)-β-D-glucan (callose) by detergent extracts of a microsomal fraction from Arabidopsis thaliana. Eur. J. Biochem. 268, 4628–4638.

Lai-Kee-Him, J., Chanzy, H., Müller, M., Putaux, J. L., Imai, T., and Bulone, V. (2002). in vitro versus in vivo cellulose microfibrils from plant primary wall synthases: Structural differences. J. Biol. Chem. 277, 36931–36939.

Lane, D. R., Wiedemeier, A., Peng, L., Hö fte, H., Vernhettes, S., Desprez, T., Hocart, C. H., Birch, R. J., Baskin, T. I., Burn, J. E., Arioli, T., Betzner, A. S., et al. (2001). Temperature-sensitive alleles of RSW2 link the Korrigan endo-1,4-β-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol. 126, 278–288.

Laosinchai, W. (2002). Molecular and biochemical studies of cellulose and callose synthase, Ph.D. Dissertation : The University of Texas at Austin.

Leloir, L. F., and Cabib, E. (1953). The enzymic synthesis of trehalose phosphate. J. Am. Chem. Soc. 75, 5445–5446.

Li, L., and Brown, R. M., Jr. (1993). β-Glucan synthesis in the cotton fiber II. Regulation and kinetic properties of β-glucan synthases. Plant Physiol. 101, 1143–1148.

Li, J., Burton, R. A., Harvey, A. J., Hrmova, M., Wardak, A. Z., Stone, B. A., and Fincher, G. B. (2003). Biochemical evidence linking a putative callose synthase gene with (1!3)-β-D-glucan biosynthesis in barley. Plant Mol. Biol. 53, 213–225.

Li, L., Zhou, Y., Cheng, X., Sun, J., Marita, J. M., Ralph, J., and Chiang, V. L. (2003a). Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc. Natl. Acad. Sci. USA 100, 4939–4944.

Li, Y., Qian, Q., Zhou, Y., Yan, M., Sun, L., Zhang, M., Fu, Z., Wang, Y., Han, B., Pang, X., Chen, M., and Li, J. (2003b). BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 15, 2020–2031.

Li, X., Wang, X. D., Zhao, X., and Dutt, Y. (2004). Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Rep. 22, 691–697.

Liepman, A. H., Wilkerson, C. G., and Keegstra, K. (2005). Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc. Natl. Acad. Sci. USA 102, 2221–2226.

Lin, F. C., and Brown, R. M., Jr. (1989). Purification of cellulose synthase from Acetobacter xylinum. In ‘‘Cellulose and Wood—Chemistry and Technology’’ (C Schuerch, ed.), pp. 473–492. John Wiley & Sons, New York.

Lin, F. C., Brown, R. M., Jr., Cooper, J. B., and Delmer, D. P. (1985). Synthesis of fibrils in vitro by a solubilized cellulose synthase from Acetobacter xylinum. Science 230, 822–825.

Lin, F. C., Brown, R. M., Jr., Drake, R. R., Jr., and Haley, B. E. (1990). Identification of the uridine 50-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc. J. Biol. Chem. 265, 4782–4784.

Lukowitz, W., Nickle, T. C., Meinke, D. W., Last, R. L., Conklin, P. L., and Somerville, C. R. (2001). Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Proc. Natl. Acad. Sci. USA 98, 2262–2267.

Matthysse, A. G., Thomas, D. L., and White, A. R. (1995a). Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J. Bacteriol. 177, 1076–1081.

Matthysse, A. G., White, S., and Lightfoot, R. (1995b). Genes required for cellulose synthesis in Agrobacterium tumefaciens. J. Bacteriol. 177, 1069–1075.

Mayer, R., Ross, P., Weinhouse, H., Amikam, D., Volman, G., Ohana, P., Calhoon, R. D., Wong, H. C., Emerick, A. W., and Benziman, M. (1991). Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. Proc. Natl. Acad. Sci. USA 88, 5472–5476.

Mlhj, M., Pagant, S., and Hö fte, H. (2002). Towards understanding the role of membrane-bound endo-β-1,4-glucanases in cellulose biosynthesis. Plant Cell Physiol. 43, 1399–1406.

Nakashima, J., Laosinchai, W., Cui, X., and Brown, R. M., Jr. (2003). New insights into the mechanism of cellulose and callose biosynthesis: Proteases may regulate callose biosynthesis upon wounding. Cellulose 10, 369–389.

Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H., and Hö fte, H. (1998). A plasma membranebound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17, 5563–5576.

Nishimura, M. T., Stein, M., Hou, B. H., Vogel, J. P., Edwards, H., and Somerville, S. C. (2003). Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301, 969–972.

Nishiyama, Y., Sugiyama, J., Chanzy, H., and Langan, P. (2003). Crystal structure and hydrogen bonding system in cellulose Ia from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306.

O’Sullivan, A. C. (1997). Cellulose: The structure slowly unravels. Cellulose 4, 173–207.

Okuda, K., Li, L., Kudlicka, K., Kuga, S., and Brown, R. M., Jr. (1993). β-glucan synthesis in the cotton fiber. I. Identification of β-1,4- and β-1,3-glucans synthesized in vitro. Plant Physiol. 101, 1131–1142.

Oomen, R. J. F. J., Tzitzikas, E. N., Bakx, E. J., Straatman-Engelen, I., Bush, M. S., Mccann, M. C., Schols, H. A., Visser, R. G. F., and Vincken, J.-P. (2004). Modulation of the cellulose content of tuber cell walls by antisense expression of different potato (Solanum tuberosum L.) CesA clones. Phytochemistry 65, 535–546.

Pagant, S., Bichet, A., Sugimoto, K., Lerouxel, O., Desprez, T., Mcmann, M., Lerouge, P., Vernhettes, S., and Hö fte, H. (2002). KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell 14, 2001–2013.

Paredez, A. R., Somerville, C. R., and Ehrhardt, D. W. (2006). Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495.

Pear, J. R., Kawagoe, Y., Schreckengost, W. E., Delmer, D. P., and Stalker, D. M. (1996). Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93, 2637–12642.

Peng, L., Kawagoe, Y., Hogan, P., and Delmer, D. (2002). Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science 295, 147–150.

Perrin, R. M. (2001). Cellulose: How many cellulose synthases to make a plant? Curr. Biol. 11, R213–R216.

Preston, R. D. (1974). ‘‘The Physical Biology of Plant Cell Walls.’’ Chapman and Hall, London pp. 425–456.

Richmond, T. (2000). Higher plant cellulose synthases. Genome Biol 1, 3001.1–3001.5.

Richmond, T. A., and Somerville, C. R. (2000). The cellulose synthase superfamily. Plant Physiol. 124, 495–498.
Robert, S., Mouille, G., and Hö fte, H. (2004). The mechanism and regulation of cellulose synthesis in primary walls: Lessons from cellulose-deficient Arabidopsis mutants. Cellulose 11, 351–364.

Robert, S., Bichet, A., Grandjean, O., Kierzkowski, D., Satiat-Jeunemaıˆtre, B., Pelletier, S., Hauser, M.-T., Hö fte, H., and Vernhettes, S. (2005). An Arabidopsis endo-1,4-β-D-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell 17, 3378–3389.

Römling, U. (2002). Molecular biology of cellulose production in bacteria. Res. Microbiol. 153, 205–212.

Ross, P., Aloni, Y., Weinhouse, H., Michaeli, D., Weinberger-Ohana, P., Mayer, R., and Benziman, M. (1986). Control of cellulose synthesis in A. xylinum. An unique guanyl oligonucleotide is the immediate activator of cellulose synthase. Carbohydr. Res. 149, 101–117.

Ruan, Y. L., Llewellyn, D. J., and Furbank, R. T. (2003). Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15, 952–964.

Sato, S., Kato, T., Kakegawa, K., Ishii, T., Liu, Y. G., Awano, T., Takabe, K., Nishiyama, Y., Kuga, S., Sato, S., Nakamura, Y., Tabata, S., et al. (2001). Role of the putative membrane-bound endo-1,4-β-glucanase Korrigan in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol. 42, 251–263.

Saxena, I. M., and Brown, R. M., Jr. (1995). Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum. J. Bacteriol. 177, 5276–5283.

Saxena, I. M., and Brown, R. M., Jr. (1997). Identification of cellulose synthase(s) in higher plants: Sequence analysis of processive β-glycosyltransferases with the common motif ‘D, D, D35QXXRW.’ Cellulose 4, 33–49.

Saxena, I. M., and Brown, R. M., Jr. (2005). Cellulose biosynthesis: Current views and evolving concepts. Ann. Bot. 96, 9–21.

Saxena, I. M., Lin, F. C., and Brown, R. M., Jr. (1990). Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol. Biol. 15, 673–683.

Saxena, I. M., Lin, F. C., and Brown, R. M., Jr. (1991). Identification of a new gene in an operon for cellulose biosynthesis in Acetobacter xylinum. Plant Mol. Biol. 16, 947–954.

Saxena, I. M., Kudlicka, K., Okuda, K., and Brown, R. M., Jr. (1994). Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: Implications for cellulose crystallization. J. Bacteriol. 176, 5735–5752.

Saxena, I. M., Brown, R. M., Jr., Fe`vre, M., Geremia, R. A., and Henrissat, B. (1995). Multidomain architecture of β-glycosyltransferases: Implications for mechanism of action. J. Bacteriol. 177, 1419–1424.

Saxena, I. M., Brown, R. M., Jr., and Dandekar, T. (2001). Structure-function characterization of cellulose synthase: Relationship to other glycosyltransferases. Phytochemistry 57, 1135–1148.

Scheible, W. R., and Pauly, M. (2004). Glycosyltransferases and cell wall biosynthesis: Novel players and insights. Curr. Opin. Plant Biol. 7, 285–295.

Scheible, W. R., Eshed, R., Richmond, T., Delmer, D., and Somerville, C. (2001). Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc. Natl. Acad. Sci. USA 98, 10079–10084.

Schindelman, G., Morikami, A., Jung, J., Baskin, T. I., Carpita, N. C., Derbyshire, P., Mcmann, M. C., and Benfey, P. N. (2001). COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev. 15, 1115–1127.

Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S., and Youngs, H. (2004). Toward a systems approach to understanding plant cell walls. Science 306, 2206–2211.

Szyjanowicz, P. M., Mcminnon, I., Taylor, N. G., Gardiner, J., Jarvis, M. C., and Turner, S. R. (2004). The irregular xylem 2 mutant is an allele of Korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J. 37, 730–740.

Tanaka, K., Murata, K., Yamazaki, M., Onosata, K., Miyao, A., and Hirochika, H. (2003). Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 133, 73–83.

Taylor, N. G., Scheible, W. R., Cutler, S., Somerville, C. R., and Turner, S. R. (1999). The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11, 769–779.

Taylor, N. G., Laurie, S., and Turner, S. R. (2000). Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12, 2529–2539.

Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K., and Turner, S. R. (2003). Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl. Acad. Sci. USA 100, 1450–1455.

Taylor, N. G., Gardiner, J. C., Whiteman, R., and Turner, S. R. (2004). Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose 11, 329–338.

Turner, S. R., and Somerville, C. R. (1997). Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9, 689–701.

Williamson, R. E., Burn, J. E., Birch, R., Baskin, T. I., Arioli, T., Betzner, A. S., and Cork, A. (2001). Morphology of rsw1, a cellulose-deficient mutant of Arabidopsis thaliana. Protoplasma 215, 116–127.

Wong, H. C., Fear, A. L., Calhoon, R. D., Eichinger, G. H., Mayer, R., Amikam, D., Benziman, M., Gelfand, D. H., Meade, J. H., and Emerick, A. W. (1990). Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc. Natl. Acad. Sci. USA 87, 8130–8134.

Yeager, A. R., and Finney, N. S. (2004). The first direct evaluation of the two-active site mechanism for chitin synthase. J. Org. Chem. 69, 613–618.

Zhong, R., Kays, S. J., Schroeder, B. P., and Ye, Z.-H. (2002). Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 14, 165–179.

Zuo, J., Niu, Q. W., Nishizawa, N., Wu, Y., Kost, B., and Chua, N. H. (2000). Korrigan, an Arabidopsis endo-1,4-β-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 12, 1137–1152.