References

  1. E. Molz. Untersuchungen �ber die Chlorose der Reben. Jena: Gustav Fischer Verlag, 1907.

  2. E.J. Hewitt, T.A. Smith. Plant Mineral Nutrition. London: The English Universities Press, 1975, p. 16.

  3. H. Molisch. Die Pflanze in ihren Beziehungen zum Eisen. Jena: Gustav Fischer Verlag. 1892.

  4. A. Wallace, D. Lunt. Iron chlorosis in horticultural plants, a review. Am. Soc. Hortic. Sci. 75:819-841, 1960.

  5. R.L. Chaney, J.C. Brown, L.O. Tiffin. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 50:208-213, 1972.

  6. S. Takagi. Naturally occurring iron-chelating compounds in oat- and rice-root washings. I. Activity measurement and preliminary characterization. Soil Sci. Plant Nutr. 22:423-433, 1976.
  7. J.C. Brown. Mechanism of iron uptake by plants. Plant Cell Environ. 1:249-257, 1978.

  8. H. Marschner, V. R�mheld, M. Kissel. Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr. 9:695-713, 1986.

  9. H.F. Bienfait, F. van der Mark. Phytoferritin and its role in iron metabolism. In: D.A. Robb, W.S. Pierpoint, eds. Metals and Micronutrients. Uptake and Utilization by Plants. London: Academic Press: London, 1983, pp. 111-123.

  10. H. Marschner. Mineral Nutrition of Higher Plants. London: Academic Press, 1995.

  11. N. Terry, J. Abadia. Function of iron in chloroplasts. J. Plant Nutr. 9:609-646, 1986.

  12. N.K. Fageria, V.C. Baligar, R.B. Clark. Micronutrients in crop production. In: D.L. Sparks, ed. Advances in Agronomy. San Diego: Academic Press, 2002, pp. 185-268.

  13. V. R�mheld, H. Marschner. Mobilization of iron in the rhizosphere of different plant species. In: B. Tinker, A. L�uchli, eds. Advances in Plant Nutrition. Vol. 2, New York: Praeger, 1986, pp. 155-204.

  14. W.L. Lindsay, A.P. Schwab. The chemistry of iron in soils and its availability to plants. J. Plant Nutr. 5:821-840, 1982.

  15. J. Gerke. Orthophosphate and organic phosphate in the soil solution of four sandy soils in relation to pH. Evidence for humic-Fe(Al)-phosphate complexes. Commun. Soil Sci. Plant Anal. 23:601-612, 1992.

  16. M.O. Olomu, G.J. Racz, C.M. Cho. Effect of flooding on the Eh, pH and concentrations of Fe and Mn in several Manitoba soils. Soil Sci. Soc. Am. Proc. 37:220-224, 1973.

  17. P.E. Powell, P.J. Staniszlo, G.R. Cline, C.P.P. Reid. Hydroxamate siderophores in the iron nutrition of plants. J. Plant Nutr. 5:653-673, 1982.

  18. S. Cesco, V. R�mheld, Z. Varanini, R. Pinton. Solubilization of iron by water-extractable humic substances. J. Soil Sci. Plant Nutr. 163:285-290, 2000.

  19. A.S. Mashhady, D.L. Rowell. Soil alkalinity. II. The effects of Na2CO3 on iron and manganese supply to tomatoes. J. Soil Sci. 29:367-372, 1978.

  20. G. Welp, U. Herms, G. Br�mmer. Influence of soil reaction, redox conditions and organic matter on the phosphate content of soil solutions. Z. Pflanzen Boden 146:38-52, 1983.

  21. G. Trolldenier. Secondary effects of potassium and nitrogen nutrition of rice: change in microbial activity and iron reduction in the rhizosphere. Plant Soil 38:267-279, 1973.

  22. G. Julian, H.J. Cameron, R.A. Olsen. Role of chelation by ortho dihydroxy phenols in iron absorption by plant roots. J. Plant Nutr. 6:163-175, 1983.


  23. H. Oki, K. SuYeon, H. Nakanishi, M. Takahashi, H. Yamaguchi, S. Mori, N.K. Nishizawa. Directed evolution of yeast ferric reductase to produce plants with tolerance to iron deficiency in alkaline soils. Soil Sci. Plant Nutr. 50:1159-1165, 2004.

  24. M. Vasconcelos, V. Musetti, C.M. Li, S.K. Datta, M.A. Grusak. Functional analysis of transgenic rice (Oryza sativa L.) transformed with an Arabidopsis thaliana ferric reductase (AtFRO2). Soil Sci. Plant Nutr. 50:1151-1157, 2004.

  25. F.R. Troeh, L.M. Thompson. Soils and Soil Fertility. 6th ed. Ames, Iowa: Blackwell, 2005, p. 293.

  26. C.R. Lee. Interrelationships of aluminum and manganese on the potato plant. Agron. J. 64:546-549, 1972.

  27. C. Bould, E.J. Hewitt, P. Needham. Diagnosis of Mineral Disorders in Higher Plants. Volume 1. Principles. London: Her Majesty's Stationery Office, 1983.

  28. E.A. Kirkby, V. R�mheld. Micronutrients in Plant Physiology: Functions, Uptake and Mobility. Proceedings No. 543, International Fertiliser Society, Cambridge UK, 9th December 2004, pp. 1-54.

  29. W. Bergmann. Nutritional Disorders of Plants. Visual and Analytical Diagnosis. Jena: Gustav Fischer Verlag, 1992, p. 15.

  30. M. Yamauchi. Rice bronzing in Nigeria caused by nutrient imbalances and its control by potassium sulfate application. Plant Soil 117:275-286, 1989.

  31. B.A. Goodman, P.C. DeKock. M�ssbauer studies of plant material. I. Duckweed, stocks, soybeans and pea. J. Plant Nutr. 5:345-353, 1982.

  32. B.N. Smith. Iron in higher plants: storage and metabolic rate. J. Plant Nutr. 7:759-766, 1984.

  33. S. Lobr�aux, J.F. Briat. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem. J. 274:601-606, 1991.

  34. O. Strasser, K. K�hl, V. R�mheld. Overestimation of apoplastic Fe in roots of soil grown plants. Plant Soil 210:179-187, 1999.

  35. N. Rodriguez, N. Menendez, J. Tornero, R. Amils, V. de la Fuente. Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization. New Phytol. 165:781-789, 2005.

  36. K. Venkat-Raju, H. Marschner. Inhibition of iron-stress reactions in sunflower by bicarbonate. Z. Pflanzen Bodenk 144:339-355, 1981.


  37. M. H�ussling, V. R�mheld, H. Marschner. Beziehungen zwischen Chlorosegrad, Eisengehalten und Blattwachstum von Weinreben auf verschiedenen Standorten. Vitis 24:158-168, 1985.

  38. V. R�mheld. The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. J. Plant Nutr. 23:1629-1643, 2000.

  39. F. Morales, R. Grasa, A. Abad�a, J. Abad�a. Iron chlorosis paradox in fruit trees. J. Plant Nutr. 21:815-825, 1998.

  40. J. Abad�a, A. �lvarez-Fern�ndez, A.D. Rombol�, M. Sanz, M. Tagliavini, A. Abad�a. Technologies for the diagnosis and remediation of Fe deficiency. Soil Sci. Plant Nutr. 50:965-971, 2004.

  41. G.A. O'Connor, W.L. Lindsay, S.R. Olsen. Diffusion of iron and iron chelates in soil. Soil Sci. Soc. Am. Proc. 35:407-410, 1971.

  42. R.L. Chaney. Diagnostic practices to identify iron deficiency in higher plants. J. Plant Nutr. 1984, 7:46-67, 1984.

  43. V. R�mheld. Different strategies for iron acquisition in higher plants. Plant Physiol. 70:231-234, 1987.

  44. N. von Wir�n, S. Mori, H. Marschner, V. R�mheld. Iron inefficiency in maize mutant ysl (Zea mays L. cv Yellow Stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol. 106:71-77, 1994.

  45. N. von Wir�n, H. Marschner, V. R�mheld. Root of iron-efficient maize also absorb phytosiderophorechelated zinc. Plant Physiol. 111:1119-1125, 1996.

  46. H. Bienfait. Prevention of stress in iron metabolism of plants. Acta Bot. Neerl 38:105-129, 1989.

  47. M. Shenker, R. Ghirlando, I. Oliver, M. Helman, Y. Hadar, Y. Chen. Chemical structure and biological activity of a siderophore produced by Rhizopus arrhizus. Soil Sci. Soc. Am. J. 59:837-843, 1995.

  48. Z. Yehuda, M. Shenker, V. R�mheld, H. Marschner,Y. Hadar,Y. Chen. The role of ligand exchange in the uptake of iron from microbial siderophores by graminaceous plants. Plant Physiol. 112:1273-1280, 1996.

  49. K. Venkat-Raju, H. Marschner, V. R�mheld. Effect of iron nutritional status on ion uptake, substrate pH and production and release of organic acids and riboflavin by sunflower plants. Z. Pflanzen Boden 132:177-190, 1972.

  50. J.C. Brown,W.E. Jones. pH changes associated with iron-stress response. Physiol. Plant 30:148-152, 1974.

  51. E.C. Landsberg. Organic acid synthesis and release of hydrogen ions in response to Fe deficiency stress of mono- and dicotyledonous plant species. J. Plant Nutr. 3:579-591, 1981.

  52. V. R�mheld. Existence of two different strategies for the acquisition of iron and other micronutrients in graminaceous species. In: G. Winkelmann, D. van der Helm, J.B. Neilands, eds. Iron Transport in Microbes, Plants and Animals. Weinheim: VCH, 1987, pp. 353-374.

  53. W. Schmidt. From faith to fate: ethylene signalling in morphogenic responses to P and Fe deficiency. J. Plant Nutr. Soil Sci. 164:147-154, 2001.

  54. G.A. Alloush, J. Le Bot, F.E. Sanders, E.A. Kirkby. Mineral nutrition of chickpea plants supplied with NO3 or NH4-N. I. Ionic balance in relation to iron stress. J. Plant Nutr. 13:1575-1590, 1990.

  55. C.R. Stocking. Iron deficiency in maize. Plant Physiol. 55:626-631, 1975.

  56. R.A. Olsen, J.H. Bennett, D. Blune, J.C. Brown. Chemical aspects of the Fe stress response mechanism in tomatoes. J. Plant Nutr. 3:905-921, 1981.

  57. N.H. Hether, N.R. Olsen, L.L. Jackson. Chemical identification of iron reductants exuded by plant roots. J. Plant Nutr. 7:667-676, 1984.

  58. M.J. Holden, D.G. Luster, R.L. Chaney, T.J. Buckhout, C. Robinson. Fe3+-chelate reductase activity of plasma membranes isolated from tomato (Lycopersicon esculentum Mill.) roots. Plant Physiol. 97:537-544, 1991.

  59. M.A. Grusak, R.M. Welch, L.V. Kochian. Physiological characterization of a single-gene mutant of Pisum sativum exhibiting excess iron accumulation. 1. Root iron reduction and iron uptake. Plant Physiol. 93:976-981, 1990.

  60. Y. Yi, M.L. Guerinot. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J. 10:835-844, 1996.

  61. E.L. Connolly, N.H. Campbell, N. Grotz, C.L. Pritchard, M.L. Guerinot. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol. 133:1102-1110, 2003.

  62. D. Eide, M. Broderius, J. Fett, M.L. Guerinot. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. USA 93:5624-5628, 1996.

  63. N.J. Robinson, C.M. Procter, E.L. Connolly, M.L. Guerinot. A ferric-chelate reductase for iron uptake from soils. Nature 397:694-697, 1999.

  64. S. Takagi, K. Nomoto, T. Takemoto. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr. 7:469-477, 1984.

  65. H. Marschner, V. R�mheld, M. Kissel. Localization of phytosiderophore release and of iron uptake along intact barley roots. Physiol. Plant 71:157-162, 1987.

  66. V. R�mheld, H. Marschner. Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores. Plant Soil 123:147-153, 1990.

  67. R. Pinton, S. Cesco, S. Santi, F. Agnolon, Z. Varanini. Water extractable humic substances enhance iron deficiency responses to Fe-deficient cucumber plants. Plant Soil 210:145-157, 1999.

  68. S. Cesco, M. Nikolic, V. R�mheld, Z. Varanini, R. Pinton. Uptake of 59Fe from soluble 59Fe-humate complexes by cucumber and barley plants. Plant Soil 241:121-128, 2002.

  69. T. Zaharieva, V. R�mheld. Specific Fe2+ uptake system in Strategy 1 plants inducible under Fe deficiency. J. Plant Nutr. 23:1733-1744, 2000.

  70. S. Fiedler, O. Strasser, G. Neumann, V. R�mheld. The influence of redox conditions in soils on extraplasmatic Fe-loading of plant roots. Plant Soil 264:159-169, 2004.

  71. J.L. Hall, L.E. Williams. Transition metal transporters in plants. J. Exp. Bot. 54:2601-2613, 2003.

  72. V. R�mheld, G. Schaaf. Iron transport in plants: a future research in view of a plant nutritionist and a molecular biologist. Soil Sci. Plant Nutr. 50:1003-1012, 2004.

  73. F.-S. Zhang, V. R�mheld, H. Marschner. Diurnal rhythm of release of phytosiderophores and uptake rate of zinc in iron-deficient wheat. Soil Sci. Plant Nutr. 37:671-678, 1991.

  74. J. Sch�nherr, V. Fernandez, L. Schreiber. Rates of cuticular penetration of chelated FeIII: role of humidity, concentration, adjuvants, temperature, and type of chelate. J. Agric. Food Chem. 53:4484-4492, 2005.

  75. V. Fernandez, G. Winkelmann. Ebert G. Iron supply to tobacco plants through foliar application of iron citrate and ferric dimerum acid. Physiol. Plant 122:380-385, 2004.

  76. J.F. Briat, S. Lobr�aux. Iron transport and storage in plants. Trends Plant Sci. 2:187-193, 1997.

  77. N. Bughio, M. Takahashi, E. Yoshimura, N.K. Nishizawa, S. Mori. Light-dependent iron transport into isolated barley chloroplasts. Plant Cell Physiol. 38:101-105, 1997.

  78. R. Shingles, M. North, R.E. McCarty. Ferrous ion transport across chloroplast inner envelope membranes. Plant Physiol. 2002, 128:1022-1030, 2002.

  79. G. Drecker. Lokalisation des spezifischen Aufnahemesystems f�r Fe(III)-Phytosiderophore in den Wurzeln von Gramineen. Masters thesis, Institute of Plant Nutrition, University of Hohenheim, Stuttgart, Germany, 1991.


  80. M. Nikolic, V. R�mheld. Does high bicarbonate supply to roots change availability of iron in the leaf apoplast? Plant Soil 241:67-74, 2002.

  81. H. Kosegarten, B. Hoffmann, K. Mengel. Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiol. 121:1069-1079, 1999.

  82. H. Kosegarten, B. Hoffmann, K. Mengel. The paramount influence of nitrate in increasing apoplastic pH of young sunflower leaf to induce Fe deficiency chlorosis, and the re-greening effect brought about by acidic foliar sprays. J. Plant Nutr. Soil Sci. 164:155-163, 2001.

  83. M. Nikolic, V. R�mheld, N. Merkt. Effect of bicarbonate on uptake and translocation of 59Fe in grapevine rootstocks differing in their resistance to iron deficiency chlorosis. Vitis 39:145-149, 2000.

  84. M. Nikolic,V. R�mheld. Nitrate does not result in iron inactivation in the apoplast of sunflower leaves. Plant Physiol. 132:1303-1314, 2003.

  85. C.D. Zhang, V. R�mheld, H. Marschner. Retranslocation of iron from primary leaves of bean-plants grown under iron-deficiency. J. Plant Physiol. 146:268-272, 1995.

  86. C.D. Zhang, V. R�mheld, H. Marschner. Effect of primary leaves on 59Fe uptake by roots and 59Fe distribution in the shoot of iron sufficient and iron deficient bean (Phaseolus vulgaris L.) plants. Plant Soil 182:75-81, 1996.

  87. C. Curie, Z. Panaviene, C. Loulergue, S.L. Dellaporta, J.F. Briat, E.L. Walker. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346-349, 2001.

  88. G. Schaaf, U. Ludewig, B.E. Erenoglu, S. Mori, T. Kitahara, N. von W�ren. ZmYS1 funtions as a proton- coupled symporter for phytosiderophore- and nicotianamide-chelated metals. J. Biol. Chem. 279:9091-9096, 2004.

  89. R.J. DiDonato, L. Roberts, T. Sanderson, R.B. Eisley, E. Walker. Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J. 39:403-414, 2004.

  90. G. Schaaf, A. Schikora, J. H�berle, G. Vert, J.F. Briat, C. Curie, N. von W�ren. A putative function for the Arabidopsis Fe-phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol. 46:762-774, 2005.

  91. S. Koike, H. Inoue, D. Mizuno, M. Takahashi, H. Nakanishi, S. Mori, N.K. Nishizawa. OsYSL2 is a rice metal-nicotianamide transporter that is regulated by iron and expressed in the phloem. Plant J. 39:415-424, 2004.

  92. D. Douchkov, C. Gryczka, U.W. Stephan, R. Hell, H. Baumlein. Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ. 28:365-374, 2005.

  93. K. Mengel, G. Guertzen. Iron chlorosis on calcareous soils: alkaline nutritional condition as the cause for the chlorosis. J. Plant Nutr. 9:161-173, 1986.

  94. H. Kosegarten, G.H. Wilson, A. Esch. The effect of nitrate nutrition on chlorosis and leaf growth in sunflower (Helianthus annuus L.). Eur. J. Agron. 8:283-292, 1998.

  95. P. Perret, W. Koblet. Soil compaction induced iron-chlorosis in grape vineyards: presumed involvement of exogenous soil ethylene. J. Plant Nutr. 7:533-539, 1984.

  96. V. R�mheld. The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130:127-134, 1991.

  97. N. von Wir�n, V. R�mheld, T. Shiviri, H. Marschner. Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the apoplasm. New Phytol. 130:511-521, 1995.

  98. V. R�mheld, H. Marschner. Rhythmic iron stress reactions in sunflower at suboptimal iron supply. Physiol. Plant 53:347-353, 1981.

  99. M. Takahashi, H. Nakanishi, S. Kawasaki, N.K. Nishizawa, S. Mori. Enhanced tolerance of rice to low iron-availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat. Biotechnol. 19:466-469, 2001.

  100. G. Neumann, V. R�mheld. The release of root exudates as affected by the plant's physiological status. In: R. Pinton, Z. Varanini, P. Namiperi, eds. The Rhizosphere. Biochemistry and Organic Substances at the Soil-Plant Interface. New York: Marcel Dekker, 2000, pp. 41-93.

  101. F. Goto, T. Yoshihara, N. Shigemoto, S. Toki, F. Takaiwa. Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol. 17:282-286, 1999.

  102. P. Lucca, R. Hurrell, I. Potrykus. Fighting iron deficiency anemia with iron-rich rice. J. Am. Coll. Nutr. 21:184-190, 2002.

  103. I. Cakmak, A. Torun, E. Millet, M. Feldman, T. Fahima, A. Korol, E. Nevo, H.J. Braun, H. Ozkan. Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. Plant Nutr. 50:1047-1054, 2004.

  104. F.R. Cox, E.J. Kamprath. Micronutrient soil tests. In: K.K. Mortvedt, P.M. Giordano, W.L. Lindsay, eds. Micronutrients in Agriculture. Madison: Soil Sci. Soc. Am., 1972, pp. 289-317.

  105. W.L. Lindsay, W.A. Norvell. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 42:421-428, 1978.

  106. H.F. Bienfait, J. Garcia-Mina, A.M. Zamare�o. Distribution and secondary effects of EDDHA in some vegetable species. Soil Sci. Plant Nutr. 50:1103-1110, 2004.

  107. V. R�mheld, H. Marschner. Mechanism of iron uptake by peanut plants. I. FeIII reduction, chelate splitting, and release of phenolics. Plant Physiol. 71:949-954, 1983.

  108. R. Rosado, M.C. del Campillo, M.A. Martinez, V. Barr�n, J. Tarrent. Long-term effectiveness of vivianite in reducing iron chlorosis in olive trees. Plant Soil 241:139-144, 2002.

  109. A.D. Rombol�, M. Toselli, J. Carpintero, T. Ammari, M. Quartieri, J. Torrent, B. Marangoni. Prevention of iron-deficiency induced chlorosis in kiwifruit (Actinidia deliciosa) through soil application of synthetic vivianite in a calcareous soil. J. Plant Nutr. 26:2031-2041, 2003.

  110. K. Mengel, E.A. Kirkby. Principles of Plant Nutrition. 5th ed. Dordrecht: Kluwer, 2001, p. 569.

  111. V. Fernandez, G. Ebert, G. Winkelmann. The use of microbial siderophores for foliar iron application studies. Plant Soil 272:245-252, 2005.

  112. M. Shenker, I. Oliver, M. Helmann, Y. Hadar, Y. Chen. Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. J. Plant Nutr. 15:2173-2182, 1992.

  113. W. H�rdt, V. R�mheld, G. Winkelmann. Fusarinines and dimerum acid, mono- and dihydrate siderophores from Penicillium chrysogenum, improve iron utilisation by strategy I and strategy II plants. BioMetals 13:37-46, 2000.

  114. J.T. Moraghan, J. Padilla, J.D. Etchevers, K. Grafton, J.A. Acosta-Gallegos. Iron accumulation in seed of common bean. Plant Soil 246:175-183, 2002.

  115. J.T. Moraghan. Accumulation and within-seed distribution of iron in common bean and soybean. Plant Soil 264:287-297, 2004.

  116. J.V. Wiersma. High rates of Fe-EDDHA and seed iron concentration suggest partial solutions to iron deficiency in soybeans. Agron. J. 97:924-934, 2005.

  117. J.A. Manthey, B. Tisserat, D.E. Crowley. Root response of sterile-grown onion plants to iron deficiency. J. Plant Nutr. 19:145-161, 1996.

  118. J.C. Brown. Differential use of Fe3+ and Fe2+ by oats. Agron. J. 71:897-902, 1979.

  119. U.C. Gupta. Levels of micronutrient cations in different plant parts of various crop species. Commun. Soil Sci. Plant Anal. 21:1767-1778, 1990.

  120. R.E. Worley, B. Mullinix. Nutrient element concentration in leaves for 40 pecan cultivars. Commun. Soil Sci. Plant Anal. 24:2333-2341, 1993.

  121. U.C. Gupta, E.W. Chipman. Influence of iron and pH on the yield and iron, manganese, zinc and sulphur concentrations of carrots grown on sphagnum peat soil. Plant Soil 44:559-566, 1976.

  122. J.C. Brown, W.E. Jones. Fitting plants nutritionally to soil. II. Cotton. Agron. J. 69:405-409, 1977.

  123. R.J. Haynes. Nutrient status of apple orchards in Canterbury, New Zealand. I. Levels of soil, leaves and fruit and the prevalence of storage disorders. Commun. Soil Sci. Plant Anal. 21:903-920, 1990.

  124. A.T. K�seoglu. Investigation of relationships between iron status of peach leaves and soil properties. J. Plant Nutr. 18:1845-1859, 1995.