Nervous Coordination

The Private World of the Senses
By any measure, people enjoy a rich sensory world. We are continually assailed by information from the senses of vision, hearing, taste, olfaction, and touch. These classic five senses are supplemented by sensory inputs of cold, warmth, vibration, and pain, as well as by information from numerous internal sensory receptors that operate silently and automatically to keep our interior domain working smoothly. The world our senses perceive is uniquely human. We share this exclusive world with no other animal, nor can we venture into the sensory world of any other animal except as an abstraction through our imagination.

The idea that each animal enjoys an unshared sensory world was first conceived by Jakob von Uexküll, a seldom cited German biologist of the early part of this century. Von Uexküll asks us to try to enter the world of a tick through our imagination, supplemented by what we know of tick biolo-gy. It is a world of temperature, of light and dark, and of the odor of butyric acid, a chemical common to all mammals. Insensible to all other stimuli, the tick climbs up a blade of grass to wait, for years if necessary, for cues that will betray the presence of a potential host. Later, swollen with blood, she drops to the earth, lays her eggs, and dies. The tick’s impoverished sensory world, devoid of sensory luxuries and fine-tuned by natural selection for the world she will encounter, has ensured her single goal, reproduction.

A bird and a bat may share for a moment precisely the same environment. The worlds of their perceptions, however, are vastly different, structured by the limitations of the sensory windows each employs and by the brain that garners and processes what it needs for survival. For one it is a world dominated by vision; for the other, echolocation. The world of each is alien to the other, just as their worlds are to us.

The nervous system originated in a fundamental property of life: irritability, the ability to respond to environmental stimuli). The response may be simple, such as a protozoan moving to avoid a noxious substance, or quite complex, such as a vertebrate animal responding to elaborate signals of courtship. A protistan receives and responds to a stimulus, all within the confines of a single cell. Evolution of multicellularity and more complex levels of animal organization required increasingly complex mechanisms for communication between cells and organs. Relatively rapid communication is by neural mechanisms and involves propagated electrochemical changes in cell membranes. The basic plan of a nervous system is to code information and to transmit and process it for appropriate action. These functions are examined in this section. Relatively less rapid or long-term adjustments in animals are governed by hormonal mechanisms, subject of the next section.