Algae, Tree, Herbs, Bush, Shrub, Grasses, Vines, Fern, Moss, Spermatophyta, Bryophyta, Fern Ally, Flower, Photosynthesis, Eukaryote, Prokaryote, carbohydrate, vitamins, amino acids, botany, lipids, proteins, cell, cell wall, biotechnology, metabolities, enzymes, agriculture, horticulture, agronomy, bryology, plaleobotany, phytochemistry, enthnobotany, anatomy, ecology, plant breeding, ecology, genetics, chlorophyll, chloroplast, gymnosperms, sporophytes, spores, seed, pollination, pollen, agriculture, horticulture, taxanomy, fungi, molecular biology, biochemistry, bioinfomatics, microbiology, fertilizers, insecticides, pesticides, herbicides, plant growth regulators, medicinal plants, herbal medicines, chemistry, cytogenetics, bryology, ethnobotany, plant pathology, methodolgy, research institutes, scientific journals, companies, farmer, scientists, plant nutrition
Select Language:
Main Menu
Please click the main subject to get the list of sub-categories
Services offered
  Section: Biotechnology Methods » Cell Biology and Genetics
Please share with your friends:  

Study of Mendelian Traits

Cell Biology and Genetics
  Cell Cycles
  Meiosis in Flower Buds of Allium Cepa-Acetocarmine Stain
  Meiosis in Grasshopper Testis (Poecilocerus Pictus)
  Mitosis in Onion Root Tip (Allium Cepa)
  Differential Staining of Blood
  Buccal Epithelial Smear and Barr Body
  Vital Staining of DNA and RNA in Paramecium
  Induction of Polyploidy
  Mounting of Genitalia in Drosophila Melanogaster
  Mounting of Genitalia in the Silk Moth Bombyx Mori
  Mounting of the Sex Comb in Drosophila Melanogaster
  Mounting of the Mouth Parts of the Mosquito
  Normal Human Karyotyping
  Black and White Film Development and Printing for Karyotype Analysis
  Study of Drumsticks in the Neutrophils of Females
  Study of the Malaria Parasite
  Vital Staining of DNA and RNA in Paramecium
  Sex-Linked Inheritance in Drosophila Melanogaster
  Preparation of Somatic Chromosomes from Rat Bone Marrow
  Chromosomal Aberrations
  Study of Phenocopy
  Study of Mendelian Traits
  Estimation of Number of Erythrocytes [RBC] in Human Blood
  Estimation of Number of Leucocytes (WBC) in Human Blood
  Culturing Techniques and Handling of Flies
  Life Cycle of the Mosquito (Culex Pipiens)
  Life Cycle of the Silkworm (Bombyx Mori)
  Vital Staining of Earthworm Ovary
  Culturing and Observation of Paramecium
  Culturing and Staining of E.coli (Gram’s Staining)
  Breeding Experiments in Drosophila Melanogaster
  Preparation of Salivary Gland Chromosomes
  Observation of Mutants in Drosophila Melanogaster
  ABO Blood Grouping and Rh Factor in Humans
  Determination of Blood Group and Rh Factor
  Demonstration of the Law of Independent Assortment
  Demonstration of Law of Segregation

Survey of Human Heredity
Some variations in human beings are inheritable. These variations can be studied using genetic principles. Some examples are given below:

Eye Color
Eye color is an example of Mendelian inheritance in man. Eye color is a polygenic trait and is determined primarily by the amount and type of pigments present in the eye’s iris. Humans and animals have many phenotypic variations in eye color. In humans, these variations in color are attributed to varying ratios of eumelanin produced by melanocytes in the iris. The brightly colored eyes of many bird species are largely determined by other pigments, such as pteridines, purines, and carotenoids. Three main elements within the iris contribute to its color: the melanin content of the iris pigment epithelium, the melanin content within the iris stroma, and the cellular density of the iris stroma. In eyes of all colors, the iris pigment epithelium contains the black pigment, eumelanin. Color variations among different irises are typically attributed to the melanin content within the iris stroma. The density of cells within the stroma affects how much light is absorbed by the underlying pigment epithelium. Darker colors like brown are dominant over blue and gray. In some albinos, the iris is pink because the blood in the retinal layer is visible. The black circle in the center of the iris is the result of a sex-linked recessive gene.

Variations in the size and form of the ears and their position on the head indicate multiple gene inheritances. A few of them correspond to variations in a single gene.

Free Ear Lobes
Free ear lobes are dominant over attached ear lobes, but there is variation in those that are not attached. On the outer margin of the pinna is a rolled rim; there is a variation in its size. In some, it is almost lacking. Nearly all persons have an enlarged portion of the cartilage that projects inwards from the rolled rim at a distinct point. It is called Darwin’s point, which is inherited as dominant. In some persons, it is expressed only 1 ear. The inheritance of natural ear lobes is the expression of an autosomal dominant gene. Many persons show this characteristic expressed on only 1 side.

Widow’s Peak

A widow’s peak is a descending V-shaped point in the middle of the hairline (above the forehead). The trait is inherited genetically and dominant. This is one of the most important Mendelian traits found in human beings.


The shape and size of the tongue is the result of many different genes. Some people have the ability to roll their tongue into a “U” shape. This is the expression of a dominant gene. The gene gives a few individuals the ability to
fold the tongue.

Hitchhikers Thumb

The ability to hyperextend the thumb (extended backwards at the last joint) is due to a recessive allele (n), and a straight thumb (N) is dominant to hitchhiker’s thumb.

PTC Tasting

The ability to taste phenylthio carbamide (PTC) is dominant (T) to the inability to taste it (t). Your instructor will provide you with small pieces of paper that have been previously soaked in this harmless chemical.

This characteristic is controlled by helandric genes. It is characterized by hair on the pinna. It follows the linear pattern of inheritance that is transferred from father to son, but never to daughter.

Copyrights 2012 © | Disclaimer